New Backgrounds and New Ideas for Sub-GeV Dark Matter Direct Detection

C.N.Yang Institute for Theoretical Physics Stony Brook University

Rutgers University

March 15, 2022

in collaboration with Daniel Egana-Ugrinovic, Rouven Essig and Mukul Sholapurkar (PRX 12, 011009) Daniel Egana-Ugrinovic, Rouven Essig and Mukul Sholapurkar (in progress) Daniel Egana-Ugrinovic, Rouven Essig, Miguel Sofo Haro, Mukul Sholapurkar and Javier Tiffenberg (in progress)

Peizhi Du

NHETC Seminar

Dark Matter

Galaxy

Galaxy Cluster

- 80% of matter, 25% total energy density in the Universe Evidence for dark matter is currently only gravitational Particle nature is unknown, a wide range of DM masses are allowed

CMB

Sub-GeV dark matter

Sub-GeV dark matter

• Dark Photon model: $\mathcal{L} \supset -\frac{1}{4}F'^{\mu\nu}F'_{\mu\nu} - \frac{\kappa}{2}F'^{\mu\nu}F'_{\mu\nu}$

Model	Detection method	Relic abundance
Dark photon as mediator	DM-electron scattering	freeze-in mechanism
Dark photon dark matter	DM absorption	gravitational production during inflation

$$\frac{1}{2}F^{\mu\nu}F'_{\mu\nu} + \frac{1}{2}m_A^2 A'^{\mu}A'_{\mu}$$

Direct detection of sub-GeV DM

Electron recoils

Access to whole kinetic energy:

$$E_{\rm ER} \lesssim \frac{1}{2} m_{\chi} v^2 \approx 1 \,\mathrm{eV} \left[\frac{m_{\chi}}{0.5 \,\mathrm{MeV}} \right]$$

Current targets

Target	Signal	Threshold	DM Mas range
Noble Liquid	electron ionization	~10 eV (atom ionization)	>10 Me\
Semiconductors	eh pairs	~leV (bandgap)	>MeV

Direct detection of sub-GeV DM

Peizhi Du (Stony Brook) | Rutgers NHETC Seminar

SENSEI, 2020

QI: Excess events are observed at current sub-GeV DM detectors. What is the origin of those events?

Q2: Can we probe sub-MeV (sub-eV) DM?

Outline of the talk

Part II New targets for probing sub-MeV DM

- Part I Unexplored low-energy backgrounds at sub-GeV DM detectors
 - Excesses at current sub-GeV DM detectors. Unexplored new backgrounds!

 - Doped semiconductors as new targets with O(10-100) meV threshold
 - Probing light DM : low threshold detectors and low backgrounds

Part I Unexplored low-energy backgrounds at sub-GeV DM detectors

Excess in sub-GeV dark matter detectors

SENSEI SENSEI, 2020

- Excess events are near the threshold
- Cannot be explained by known sources
- Limits the sensitivity for dark matter detection

Unexplored low energy backgrounds

Cherenkov radiation and radiative recombination photons are likely to explain the excess

Cherenkov radiation inside detector Radiative recombination inside detector Cherenkov radiation from holders

Unexplored low energy backgrounds

Why these backgrounds haven't been studied before?

- Not the usual high energy radioactivity backgrounds
- First generation of experiments of sub-eV resolution
- Challenging to identify them: events in the signal region

Cherenkov Radiation

Incident charge is moving faster than the speed of light inside the medium

Cherenkov radiation

$$\frac{d^2 N}{d\omega dx} = \alpha \left(1 - \frac{\operatorname{Re} \epsilon(\omega)}{v^2 |\epsilon(\omega)|^2} \right)$$

Peizhi Du (Stony Brook) | Rutgers NHETC Seminar

Jackson, Classical Electrodynamics

Conditions:

$$v^2 \mathrm{Re} \ \epsilon(\omega) > 1$$

$$\epsilon = (n + ik)^2$$

$$\cos \theta_{\rm Ch} = \frac{\sqrt{\rm Re} \ \epsilon(\omega)}{v |\epsilon(\omega)|}$$

Cherenkov Radiation in semiconductors

Cherenkov spectrum:

$$\omega \lesssim 4 \,\mathrm{eV}$$

Near bandgap/detection threshold

Typical rate:

$$\frac{d^2 N}{d\omega dx} \sim \alpha \quad (\text{for } \epsilon(\omega) \gg 1)$$

$$N \sim 40 \left[\frac{\Delta \omega}{1 \text{ eV}}\right] \left[\frac{\Delta x}{1 \text{ mm}}\right]$$
ignificant rate for dark matter detection

Electron-hole recombination

Radiative recombination

 $\Gamma_{\rm rec}^e \propto n_e n_h$

- Emitted spectrum near bandgap
- Significant for high carrier concentration (doped silicon)
- For 100 keV energy deposit and $n_e = 10^{18} \text{ cm}^{-3}$

$$N_{\gamma} = N_e \frac{\tau_{\rm tot}}{\tau_{\rm rad}} \approx 200$$

SENSEI experiment

- Look for electron-hole pairs in skipper CCD, ~0.1 e⁻ resolution ullet
- Location: MINOS cavern at Fermilab, 104 m underground \bullet
- CCD: Excellent spatial resolution Limited timing resolution lacksquare

SENSEI, 2020

SENSEl experiment

SENSEI image (half of one quadrant)

le events

Electrons

X ray

Muons

SENSEl experiment

SENSEI image (half of one quadrant)

l e events Electrons X ray

Muons

Analysis cut: Halo mask

Single electron event excess

- The rate is correlated with high energy background event rate
- Has spatial correlation with high energy events
- Extends to 60 pixels away and the rate becomes flat: 450 events/g-day

SENSEI, 2020

Cherenkov radiation in SENSEI

Cherenkov photons

Cherenkov radiation in SENSEI

Radiative recombination in SENSEI

- ~5 µm of highly doped region ($n_e \ge 10^{17}$ /cm³)
- Significant contribution to le events from radiative recombination

DAMIC, 2021

Simulation results (preliminary)

SENSEI image

High energy tracks

Simulation results (preliminary)

SENSEI image

High energy tracks+Cherenkov+Radiative recombination

Excess at SuperCDMS HVeV

- Independent of voltage
- The origin of 2-6 electron events are unknown

Single electron events are likely to come from leakage current

Cherenkov radiation at SuperCDMS HVeV

Can be vetoed by timing information

Cannot be vetoed

Estimation of Cherenkov events

f : efficiency of a Cherenkov photon being recorded at the detector

Best fit: f≈1.6×10⁻³

- Small f indicates a lot of Cherenkov \bullet photons generated
- One parameter fits the spectrum for \bullet 2-6 electron events

PD, Egana-Ugrinovic, Essig, Sholapurkar, 2020

Mitigation strategies

- Active and passive shielding
- Radio-pure materials
- Multiple detectors (remove coincident events) lacksquare

PD, Egana-Ugrinovic, Essig, Sholapurkar, 2020

Mitigation strategies

- Active and passive shielding
- Radio-pure materials ullet
- Multiple detectors (remove coincident events)
- Minimizing non-conductive/un-instrumented materials near detector
- Thinning the doped region of the CCD
- Reduce the reflectivity of inner copper wall

PD, Egana-Ugrinovic, Essig, Sholapurkar, 2020

First proposed in our work

Summary of part l

- Many sub-GeV dark matter experiments observe excess events
- Cherenkov radiation and radiative recombination are likely to explain the excess in SENSEI and SuperCDMS HVeV

• Several mitigation strategies can be applied to reduce these backgrounds

Part II New targets for probing sub-MeV DM

Probing sub-MeV DM

Target	Signal	Threshold	DM Mass range
Nobel Liquid	electron ionization	~10 eV (atom ionization)	>10 MeV
Semiconductors	eh pairs	~leV (bandgap)	>MeV
Polar materials	phonon	10-100meV	>10-100 keV
Superconductor	phonon/ quasiparticle	~ImeV	>IkeV

Dirac materials, superfluid helium, Ge detector with charge amplification ...

Hochberg, Zhao, Zurek, 2015 Schutz, Zurek, 2016 Knapen, Lin, Pyle, Zurek, 2017 Hochberg, Kahn, Lisanti, Zurek, et.al, 2017 D. M. Mei, et,al. 2017

Probing sub-MeV DM

Target	Signal	Threshold	
Nobel Liquid	electron ionization	~10 eV (atom ionization)	
Semiconductors	eh pairs	~leV (bandgap)	
Polar materials	phonon	10-100meV	>
Polar materials Doped Semiconductors	phonon/ phonon/ electron ionization/ eh pairs	10-100meV 10-100meV	>

Doped semiconductors

Doped semiconductors

n-type semiconductor

Donors in Silicon: P,As ...(group V elements)

Commonly used: p-n junction, diodes

p-type semiconductor

Acceptors in Silicon: B,Al ...(group III elements)

Doped semiconductors

n-type semiconductor

Donors in Silicon: P,As ...(group V elements)

Commonly used: p-n junction, diodes

p-type semiconductor

Acceptors in Silicon: B,Al ...(group III elements)

Dopants in semiconductors

Dopants: "Hydrogen atoms" in a background with a large dielectric constant

Dopants in semiconductors

 $E_{\text{ionization}} \sim \frac{1}{2} \left(\frac{\alpha}{\epsilon}\right)^2 m_* \sim 10 - 100 \,\mathrm{meV}$

Peizhi Du (Stony Brook) | Rutgers NHETC Seminar

Dopants: "Hydrogen atoms" in a background with a large dielectric constant

For $\epsilon \sim 10$ $a_* \sim (\frac{\alpha}{\epsilon} \overset{\downarrow}{m_*})^{-1} \sim O(10) \overset{\downarrow}{a_0} q_* \sim a_*^{-1} \sim O(100) \,\mathrm{eV} v_* = \frac{q_*}{m_*} \sim 10^{-3}$

Dopants in semiconductors

electron effective mass For $\epsilon \sim 10$ $a_* \sim (\frac{\alpha}{\epsilon}m_*)^{-1} \sim O(10)a_*$

 $E_{\text{ionization}} \sim \frac{1}{2} \left(\frac{\alpha}{\epsilon}\right)^2 m_* \sim 10 - 100 \,\mathrm{meV}$

Peizhi Du (Stony Brook) | Rutgers NHETC Seminar

Dopants: "Hydrogen atoms" in a background with a large dielectric constant

Bohr radius

$$a_0 \quad q_* \sim a_*^{-1} \sim O(100) \,\mathrm{eV}$$

Conduction band

Valence band

Dopant energy levels in silicon

Signals in doped silicon

Gaymann, Geserich, Lohenysen, 95

Phosphorus doped Si @10K

$$n_d = 0.34 \times 10^{18} cm^{-3}$$

Signals in doped silicon

Gaymann, Geserich, Lohenysen, 95

Peizhi Du (Stony Brook) | Rutgers NHETC Seminar

Signals in doped silicon

Gaymann, Geserich, Lohenysen, 95

What is the optimal n_d for DM searches? Metal-insulator transition

Electrons are localized on dopants

Insulating

 $n_{\rm d} < n_c$

Good for DM searches

Electrons are delocalized

Metallic

 $n_{\rm d} > n_c$

Metallic targets have no gap, hard to control noise

DM-electron scattering rate

DM velocity distribution Interaction type Target response

 $R \sim \int d^3 \mathbf{v} f(\mathbf{v}) \int d^3 \mathbf{q} F^2(\mathbf{q}) S(\mathbf{q}, \omega_{\mathbf{q}})$

DM-electron scattering rate

DM velocity distribution Interaction type Target response

$$R \sim \int d^3 \mathbf{v} f(\mathbf{v}) \int$$

$$\omega_{\mathbf{q}} = \frac{\mathbf{p}^2}{2m_{\chi}} - \frac{(\mathbf{p} - \mathbf{q})^2}{2m_{\chi}} = \mathbf{q} \cdot \mathbf{v} - \frac{q^2}{2m_{\chi}}$$

 $d^3 \mathbf{q} F^2(\mathbf{q}) S(\mathbf{q}, \omega_{\mathbf{q}})$

Peizhi Du (Stony Brook) | Rutgers NHETC Seminar

Target response

$$R \sim \int d^3 \mathbf{v} f(\mathbf{v}) \int$$
$$S(\mathbf{q}, \omega_{\mathbf{q}}) = \frac{q^2}{2\pi\alpha} \operatorname{Im}\left[\frac{-1}{\epsilon(\mathbf{q}, \omega_{\mathbf{q}})}\right]$$

Energy loss function (ELF)

Knapen, Kozaczuk, Lin, 2021 Hochberg, Kahn, Kurinsky, Lehmann, Yu, Berggren, 2021

$\int d^3 \mathbf{q} \, F^2(\mathbf{q}) \, S(\mathbf{q}, \omega_{\mathbf{q}})$

ELF of hydrogen atom ionization (45 meV threshold)

Target response

$$R \sim \int d^3 \mathbf{v} f(\mathbf{v}) \int$$

$$S(\mathbf{q}, \omega_{\mathbf{q}}) = \frac{q^2}{2\pi\alpha} \operatorname{Im}\left[\frac{-1}{\epsilon(\mathbf{q}, \omega_{\mathbf{q}})}\right]$$

Energy loss function (ELF)

For $q < q_*$ in "hydrogen atom" model

Im
$$\left[\frac{-1}{\epsilon(\mathbf{q},\omega_{\mathbf{q}})}\right] \approx \operatorname{Im}\left[\frac{-1}{\epsilon(\omega_{\mathbf{q}})}\right]$$

 $\epsilon(\omega)$ can be obtained directly from optical data

Knapen, Kozaczuk, Lin, 2021 Hochberg, Kahn, Kurinsky, Lehmann, Yu, Berggren, 2021

Target response $d^3 \mathbf{q} F^2(\mathbf{q}) S(\mathbf{q}, \omega_{\mathbf{q}})$

ELF of hydrogen atom ionization (45 meV threshold)

Target response

$$R \sim \int d^3 \mathbf{v} f(\mathbf{v}) \int$$

$$S(\mathbf{q}, \omega_{\mathbf{q}}) = \frac{q^2}{2\pi\alpha} \operatorname{Im}\left[\frac{-1}{\epsilon(\mathbf{q}, \omega_{\mathbf{q}})}\right]$$

Energy loss function (ELF)

For $q < q_*$ in "hydrogen atom" model

Im
$$\left[\frac{-1}{\epsilon(\mathbf{q},\omega_{\mathbf{q}})}\right] \approx \operatorname{Im}\left[\frac{-1}{\epsilon(\omega_{\mathbf{q}})}\right]$$

 $\epsilon(\omega)$ can be obtained directly from optical data

We use
$$S(\mathbf{q}, \omega_{\mathbf{q}}) \approx \frac{q^2}{2\pi\alpha} \operatorname{Im}\left(\frac{-1}{\epsilon(\omega_{\mathbf{q}})}\right)$$

good approximation for low mass DM with light mediators

Knapen, Kozaczuk, Lin, 2021 Hochberg, Kahn, Kurinsky, Lehmann, Yu, Berggren, 2021

Target response $d^3 \mathbf{q} F^2(\mathbf{q}) S(\mathbf{q}, \omega_{\mathbf{q}})$

ELF of hydrogen atom ionization (45 meV threshold)

ELF for different targets

Doped silicon has large target response over a wide energy range

Hochberg, Zhao, Zurek, 2015 Knapen, Lin, Pyle, Zurek, 2017 Knapen, Kozaczuk, Lin, 2021 Hochberg, Kahn, Kurinsky, Lehmann, Yu, Berg

jgren,	2021
--------	------

DM-electron scattering rate with doped silicon PD, Egana-Ugrinovic, Essig, Sholapurkar, (in prep)

DM-electron scattering rate with doped silicon PD, Egana-Ugrinovic, Essig, Sholapurkar, (in prep)

DM absorption rate with doped silicon

PD, Egana-Ugrinovic, Essig, Sholapurkar, (in prep)

DM reach including backgrounds

Need a "background free" exposure of ~g-month (Ie) or ~g-yr (2e) to probe freeze-in benchmark

PD, Egana-Ugrinovic, Essig, Sholapurkar, 2020

Thoughts on experimental designs

For phonon signals:

Doped semiconductor + TES

For charge signals:

- New CCD design with doped bulk material
- Single charge resolution, like Skipper CCD

PD, Egana-Ugrinovic, Essig, Sofo Haro, Sholapurkar, Tiffenberg (in prep)

• Two detectors may distinguish between electron ionization from dopants to eh pair creation

Summary of Part II

- large dielectric constant
- DM absorption

Dopants in semiconductors can be thought as "Hydrogen atom" in a background with a

Doped semiconductors can be detector targets with O(10-100) meV threshold and have sensitivity over a wide range of DM masses: >10 keV for DM scattering and >10 meV for

Thank you

Summary of current experiments

	Experiment	Location	Chero contri
Good spatial resolution	SENSEI	~100m underground	likely do with ra recomb
	SuperCDMS HVeV	surface	likely do
Good timing resolution	EDELWEISS	~1800m underground	subdo
	CRESST	~1400m underground	vet ever

Cherenkov radiation in SENSE

Cherenkov photons are generated inside CCD, pitch adapter and epoxy

Cherenkov photons maybe absorbed after several bounces at surfaces

le events far from the original track

SuperCDMS HVeV experiment

- HVeV detector measures electron-hole pairs via phonons (NTL effect)
- Location: on surface in Northwestern University
- HVeV detector has 0.03 e- resolution, excellent time resolution

SuperCDMS, 2020

SuperCDMS @ SNOLAB

Well shielded, deep underground, clean environment

Potential events:

 $N_{\rm events}^{\rm Cirlex} \sim 130/{\rm day/tower}$

much larger than previously estimated <100 eV backgrounds ~0.1/day/tower

Cherenkov radiation from beta decays of impurities in holders (Cirlex clamps)

Figure from Ben Loer, DM 2018

SuperCDMS SNOLAB, 2016

